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Basics of thermodynamics and thermochemistry

What is thermodynamics ?

Definition from the Collins English dictionnary
The branch of physical science concerned with the interrelationship and interconversion
of different forms of energy and the behaviour of macroscopic systems in terms of certain
basic quantities, such as pressure, temperature, etc.

What will we cover with thermodynamics ?
Ideal gas and mixtures
Solution and solutes
Raoult’s and Henry’s law
Osmotic swelling
Chemical reaction and equilibrium
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Basics of thermodynamics and thermochemistry

Definition of a system

Open system: can exchange heat, work and matter
with the outside

Closed system: can exchange heat and work with the
outside

Isolated system: no exchange with the outside
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Basics of thermodynamics and thermochemistry

Intensive and extensive variables

Intensive variables:
The value does not change
following a change of scale

Temperature
Pressure
Chemical potential
. . .

Extensive variables:
The value is modified by the
change of scale with the same ratio

Entropy
Volume
Mole quantity
. . .

Every intensive variable is associated to an extensive one. p/V, S/T, N/µ . . .
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Basics of thermodynamics and thermochemistry

Laws of thermodynamics

0th law
For a system at equilibrium (every state variable are remaining constant), one can define
a temperature T (intensive) which is homogeneous in the whole system

1st law
If a sytem is subjected to a transformation, the variation of internal energy can be
divided into work and heat. The internal energy of an isolated system remains constant.

2nd law
One can define a quantity named entropy. Entropy of an isolated system tends to
increase until it reaches the maximum value at equilibrium

3rd law
If a system approaches the absolute zero temperature, entropy reaches an absolute
minimum value
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Basics of thermodynamics and thermochemistry

1st law of thermodynamics

U the internal energy:

δU = δQ + δW
δQ infinitesimal heat evolution, δW infinitesimal work evolution
Internal energy encompasses all forms of energy i.e. potential energy, elastic energy,
kinetic energy . . .

δW is the sum of all the work exchanged
Especially, the work of external pressure: δWp = −pextdV

The infinitesimal variation of internal energy for a system uniquely subjected to the work
of pressure is then:

dU = −pdV + δQ
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Basics of thermodynamics and thermochemistry

Legendre Transform and enthalpy

At constant volume, the variation of internal energy reduces to dU = δQ

Legendre tranform
Legendre transform is defined for a function f as f (y) = g(x)− xy with y = g ′(x)
Allows to change the set of variable for a function. In thermodynamics, Legendre
transform allows to exchange the place of an intensive variable and its associated
extensive variable: p/V , T/S, µ/N . . .

Enthalpy
H = U + pV (we have ∂U

∂V = −p)
dH = δQ + Vdp
At constant pressure, the variation heat is stored in
the enthalpy

Kamerlingh-Omnes

Internal energy is adapted when considering a problem where the volume is controlled.
Enthalpy is adapted when considering a problem where the pressure is controlled
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Basics of thermodynamics and thermochemistry

2nd law: entropy

Entropy
We postulate the existence of entropy S as the extensive variable which is linked to heat
transfer. Heat transfer δQ can be written:

δQ ≤ TdS
T is the intensive variable associated to entropy
There is equality when the process is non-dissipative (reversible). TdS − δQ is the energy
dissipated during the transformation.

Dissipation and reversibility
A process is called reversible if there is no production of entropy → we can rewind the
movie

Arrow of time
The second principle says that for whatever transformation of an isolated system:
dS
dt ≥ 0 The equality is valid for reversible processes
Universe is an isolated subjected to an irreversible transformation → the entropy of the
Universe is ever increasing
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Basics of thermodynamics and thermochemistry

Microscopic entropy: Boltzmann definition

In statistical thermodynamics, entropy is not a postulate
Entropy is defined as the measure of the number of possible microstates of a system in
thermodynamic equilibrium, consistent with its macroscopic thermodynamic properties.

S = kB ln Ω
Ω is the number of microstates consistent with the observed macrostate. kB is the
Boltzmann constant.

Entropy measures the lack of information
The higher the entropy the more microstates are
possible. Because of thermal fluctuations the system
is always changing of microstate even at equilibrium.

Boltzmann tomb
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Basics of thermodynamics and thermochemistry

Thermodynamic potentials

dU = TdS − pdV (holds also for a non-reversible process as U is a state variable)
Entropy is not a convenient extensive variable to work with.

Use of Legendre transform to change the set of variables
We define the Helmholtz free energy F and the Gibbs free energy G as:
F = U − TS
G = H − TS = U + PV − TS (also called free enthalpy)

Willard Gibbs
Hermann von Helmholtz
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Basics of thermodynamics and thermochemistry

Importance and utility of the thermodynamical potentials

Helmoltz free energy

Let us consider a system subjected to an irreversible transformation.

dF = d(U − TS) ≤ −SdT + δW

For an infinitesimal reversible isothermal transformation, dF = δW
The Helmholtz free energy is equal to the work obtained during the transformation.
If no work is exchanged (V = cte) dF ≤ 0

Gibbs free energy

Let us consider a system whose T and p are controlled.

dG = d(H − TS) ≤ −SdT + Vdp = 0
G always decreases and reaches a minimum at equilibrium
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Basics of thermodynamics and thermochemistry

Partial molar quantities

Mixture of ethanol and water
1 mol of water in 1L of water ⇒ volume increase of 18 cm3

1 mol of water in 1L of ethanol ⇒ volume increase of 14 cm3

The identity of the surrounding molecules modifies the volume increase
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1 mol of water in 1L of ethanol ⇒ volume increase of 14 cm3

The identity of the surrounding molecules modifies the volume increase

Euler Theorem
Let us consider an extensive property Z(T , p, ni ) (such as volume, enthalpy. . . )

As Z is extensive: Z(T , p, λni ) = λZ(T , p, ni ) (change of scale)

Z (T , p, ni ) =
∑

i ni Z̄i with Zi =
(
∂Z
∂ni

)
T ,p,nj 6=i

In the case of water and ethanol, V̄w = ∂V
∂nw

< υw , with υw the pure molar volume of
water
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Basics of thermodynamics and thermochemistry

Chemical potential

Exchange of matter in an open system
Let us define the intensive variable µi associated with the extensive variable ni , the mole
quantity of species i in the system.

The different thermodynamic potentials are then rewritten (reversible infinitesimal
transformation)

dU = TdS − pdV +
∑

i µi dni

dH = TdS + Vdp +
∑

i µi dni

dF = −SdT − pdV +
∑

i µi dni

dG = Vdp − SdT +
∑

i µi dni

And the chemical potential verifies then the following equations
µi =

(
∂U
∂ni

)
S,V ,nj 6=i

=
(
∂H
∂ni

)
S,p,nj 6=i

=
(
∂F
∂ni

)
T ,V ,nj 6=i

=
(
∂G
∂ni

)
T ,p,nj 6=i

= Ḡi
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Basics of thermodynamics and thermochemistry

Gibbs-Duhem equation

G is extensive so we can use the Euler theorem
G(T , p, ni ) =

∑
i niµi

Gibbs-Duhem relation
dG = Vdp − SdT +

∑
i µi dni =

∑
i ni dµi +

∑
i µi dni

⇒ SdT − Vdp +
∑

i ni dµi = 0

For a system at constant temperature and pressure GD relation simplifies to∑
i ni dµi = 0
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Basics of thermodynamics and thermochemistry

Chemical equilibrium

Let’s consider a closed system with 1 constituents divided in 2 phases J and K at a
constant T and p

dG = µJdnJ + µK dnK =
(
µK − µJ) dnJ→K ≤ 0

We reach equilibrium when dG = 0 i.e. µK = µJ . The chemical equilibrium implies the
equality of the chemical potential in all the phases (but DOES NOT imply the equality of
the chemical potential of different species)
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Basics of thermodynamics and thermochemistry

Equation of state: example of perfect gases and fugacities

Equation for a pure perfect gas
pV = nRT

Maxwell relation gives: ∂2G
∂n∂p = ∂2G

∂p∂n ⇒ ∂µ
∂p = ∂V

∂n = RT
p

After integration we obtain: µ(p,T ) = µ0(T ) + RT ln(p/p0)

What if the gas is not ideal ?
We keep the same relation but we use the fugacity f = Φp instead of p

µ(p,T ) = µ0(T ) + RT ln(f /f 0)

For a mixture, the pressure (or fugacity) is replaced by the partial pressure of the gas:
pi = xi ptot with xi = ni∑

i
ni

the molar fraction (Dalton)

The reference state µ0 is taken by convention as the pure perfect gas at p = 1 bar.
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Basics of thermodynamics and thermochemistry

Chemical potential of solutions

By analogy with the perfect gas, we define the chemical potential of a solution as a sum
of a standard chemical potential and a activity term:
µi = µ0

i︸︷︷︸
standard state

+ RT ln ai︸ ︷︷ ︸
activity term

According to the situation,3 definitions of activity are possible:
• ai = γ1i xi molar fraction xi = ni∑

i
ni

• ai = γ2i ci molar concentration ci = ni
Vsolution

• ai = γ3i mi molality mi = ni
Msolvent

The standard state of a solute is defined as:
1 mole of the considered species in an hypothetical solution behaving as infinitely diluted
containing 1kg of water for any temperature and pressure
Helgeson et al. 1981
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Basics of thermodynamics and thermochemistry

Mixing Quantities

Mixing of 2 gases at temperature and pressure constant
∆G = n1µ1 + n2µ2 − (n1µ

0
1 + n2µ

0
2)

∆G = RTn1 ln
(
x1Φ1/Φ0

1
)

+ RTn2 ln
(
x2Φ2/Φ0

2
)

Composition and excess Gibbs free energy of mixing

∆G = RT
∑

i

ni ln xi︸ ︷︷ ︸
composition

+ RT
∑

i

ni ln Φi/Φ0
i︸ ︷︷ ︸

excess

Gibbs free energy of mixing is always negative: mixing is a spontaneous process (no
reversibility)
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Basics of thermodynamics and thermochemistry

Mixing Quantities

Entropy of mixing

∆S =
(
∂∆G
∂T

)
p,ni

= −R
∑

i

ni ln(xi )︸ ︷︷ ︸
Scomp

−

(
R
∑

i

ni ln Φi/Φ0
i + RT

∑
i

ni

(
∂Φi/Φ0

i
∂T

)
p,ni

)
︸ ︷︷ ︸

Sex

Enthalpy of mixing

∆H = ∆G + T ∆S = −RT 2∑
i ni

(
∂Φi/Φ0

i
∂T

)
p,ni

Creation of entropy during the mixing: we are increasing the number of possible
microstates
Excess entropy measures the difference of interaction between the molecules which
can decrease of increase the global entropy of mixing
For an ideal mixing, the enthalpy is zero: no heat exchanged.
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Basics of thermodynamics and thermochemistry

Application of chemical potentials
Raoult’s law

What is the equilibrium partial pressure of vapor above a liquid mixture ?
Example of J component:

Chemical potential of the vapor: µv
J (pJ ,T ) = µ0

J (T ) + RT ln(pJ/p0)
Chemical potential of the solvent: µl

J (p,T ) = µ∗J (p,T ) + RT ln xJ

The thermodynamic equilibrium gives: µ0
J (T ) + RT ln(pJ/p0) = µ∗J (p,T ) + RT ln xJ

In the case of a pure component, xJ = 1 and then µ0
J (T )− µ∗J (p,T ) = RT ln(p∗J /pJ )

Raoult law
The partial pressure of component J over a
mixture is equal to pJ = xJp∗

J , with p∗J
the partial pressure over the pure component
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Basics of thermodynamics and thermochemistry

Application of chemical potentials
Henry’s law

Case of a solution: what is the concentration of a gas in a solution ?
Thermodynamic equilibrium : µ0

J (T ) + RT ln(pJ/p0) = µ∗J (p,T ) + RT ln xJ

Can be rewritten pJ = xJ × p0 exp
(
µ∗J (p,T )− µ0

J (T )
RT

)
︸ ︷︷ ︸

KH (p,T )

with KH(T ) the Henry constant. KH(298.15K,N2) = 9.077.104atm

Decompression stages for divers
Beer foam when opening the bottle
Dissolution of CO2 in the oceans
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Basics of thermodynamics and thermochemistry

Application of chemical potentials
Osmostic swelling

Two containers separated by a membrane permeable to solvent but not solute
chemical potential of the pure solvent: µ∗(p,T )
chemical potential of the solution: µ∗(p + ∆p) + RT ln(1− x)

Taylor development (for infinitely diluted solutions) and thermodynamical equilibrium:
∆p ∂µ

∗

∂p = RTx

∆p = RT
υ

= RTc υ being the molar volume of the solution

Migration of the solvent to the solution
to equalize the concentrations
Reverse osmosis to purify water
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Basics of thermodynamics and thermochemistry

Application of chemical potentials
Chemical reactions

Let us consider a the following chemical reaction AνA BνB . . .−−νAA + νBB . . .
The molar quantity of reaction for an extensive property is:

∆r X =
∑

i νi
(
∂X
∂ni

)
T ,p,ni 6=j

ν are the algebraic stoichiometric coefficients (+ for products, - for reactive)

Gibbs free energy of reaction
∆r G =

∑
i νi
(
∂G
∂ni

)
T ,p,ni 6=j

=
∑

i νiµi

∆r G =
∑

i ν
0
i +
∑

i RT ln ai

∆r G = ∆r G0 + RT lnQr

∆r G0(p,T )⇒ standard Gibbs free energy of reaction
Qr ⇒ Ion activity product (or reaction quotient)
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Basics of thermodynamics and thermochemistry

Application of chemical potentials
Chemical reactions

Extent of reaction (De Donder Variable)

dξ = dni
νi

For example CaCl2 = Ca2+ + 2Cl−
dξ = −dnCaCl2 = dnCa2+ = dnCl−/2

Equilibrium
The Gibbs free energy is decreasing for a system at constant T and p.
At equilibrium dG

dξ = 0

dG =
∑

i µi dni =
∑

i µiνi dξ = ∆r Gdξ

At equilibrium ∆r G = 0
We define the equilibrium constant as ∆r G0 = −RT lnKs
At equilibrium, Qr = Ks ⇒ Ks =

∏
i aνi

i Mass action law
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Basics of thermodynamics and thermochemistry

Example: Swellling of bentonite in water

Bentonite is a kind of clay (mostly Montmorillonite (Na,Ca)0.33(Al,Mg)2(Si4O10)(OH2)· nH2O)
which swells strongly in water)

Bentonite is composed of small platelets (size Å) with a negative surface charge q. The solution
is charged with ions (concentrations c+ and c−). Two platelets are separated with a distance 2d .
The concentration of the solution outside the bentonite is c∞
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Basics of thermodynamics and thermochemistry

Example: swelling of bentonite in water

Electroneutrality: 2q +
∫ +d
−d F (c+(x) + c−(x)) dx = 0

Electrostatic pressure on the platelets: pel = q2
2ε0εr

+ q
2εrε0

∫ +d
−d F (c+(x) − c−(x)) dx = − q2

2ε0εr

Excess pressure on the platelets: ptot = RT [c+(d) + c−(d) − 2c∞]︸ ︷︷ ︸
osmotic pressure

+pel

{
Chemical potential of the cations: µ+(x) = µ0+(x) + RT ln c+(x) + Fψ(x)
Chemical potential of the anions: µ−(x) = µ0−(x) + RT ln c−(x) − Fψ(x)

{
µ+(x) = µ+(∞)
µ−(x) = µ−(∞) ⇒

{
RT ln c+(x) + Fψ(x) = RT ln c∞
RT ln c−(x)− Fψ(x) = RT ln c∞ ⇒

{
c+(x)c−(x) = c2

∞
cx (x) = c∞ exp (−Fψ/RT )
cx (x) = c∞ exp (Fψ/RT )
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Basics of thermodynamics and thermochemistry

Example: swelling of bentonite in water

Poisson equation between the platelets: ∆ψ = − F
ε0εr [c+(x)− c−(x)]

Using electroneutrality and symmetry dψ
dx

∣∣
x=0

= 0 we obtain dψ
dx

∣∣
x=d

= q
ε0εr

Combining the expressions of c+ and c− with the Poisson equation, we obtain after integration
1
2 ε0εr

(
dψ
dx

)2
= RT [c+(x) + c−(x)− c+(0)− c−(0)]

Combining the last equations with the expression of pressure we get: ptot = RT [c+(0) + c−(0)− 2c∞] which
is always positive: repulsion

Finally, considering the Poisson equation, the characteristic length of the system is L =
√

ε0εr RT
2c∞F2 (Debye

Length)

The characteristic distance between two platelets is
inversely proportional to the squareroot of the outside
concentration. Bentonite swells less with salted water
than with pure water because of the osmotic pressure

Mainly used for sealing purposes in civil engineering
especially in the radioactive waste repositories.
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